Pular para o conteúdo principal

ALGUNS QUEBRA-CABEÇAS INTERESSANTES

Quebra-cabeças que , na maioria das vezes, se resolve tentando liberar um objeto preso em base ou a transferencia de uma de uma lado para outro em uma laçada, veja outros em http://www.legadoludico.pop.com.br/.

1. Liame

O desafio deste quebra-cabeça consiste na retirada da argola da estrutura. Este quebra-cabeça é um tipo característico de falso nó, por apresentar-se com estruturas aparentemente entrelaçadas. A natureza topológica deste tipo de quebra-cabeça, a forma como as peças se interlaçam, é de capital importância para a sua caracterização. A topologia estuda as propriedades do espaço que permanecem inalteradas quando neste se produzem determinadas alterações chamadas transformações topológicas. Do conjunto de transformações topológicas possíveis, os alongamentos, as contrações e as torções designam-se por transformações contínuas, uma vez que não se produzem cortes nem auto-interseções. Além dos aspectos topológicos deve-se ter em conta aspectos relacionados com a geometria do quebra-cabeça para a sua solução.

2. Obelisco


Quebra-cabeça cujo objetivo é remover totalmente a argola da estrutura na qual se encontra presa, para tanto não se deve romper o cordão ou soltar as demais peças que se encontram fixas nele. A natureza topológica deste tipo de quebra-cabeça, a forma como as peças se interlaçam, é de capital importância para a sua caracterização. A topologia é o ramo da Matemática que estuda as propriedades do espaço que permanecem inalteradas quando neste se produzem determinadas alterações chamadas transformações topológicas. Do conjunto de transformações topológicas possíveis, os alongamentos, as contrações e as torções designam-se por transformações contínuas, uma vez que não se produzem cortes nem auto-interseções. Além dos aspectos topológicos deve-se ter em conta aspectos relacionados com a geometria do quebra-cabeça para a sua solução.

3. Cravo

O Cravo apresenta como desafio a transposição da esfera de um lado para o outro da "laçada". Este quebra-cabeça, bastante estudado, é um tipo característico de falso nó, por apresentar-se com estruturas aparentemente entrelaçadas. A natureza topológica deste tipo de quebra-cabeça, a forma como as peças se interlaçam, é de capital importância para a sua caracterização. A topologia é o ramo da Matemática que estuda as propriedades do espaço que permanecem inalteradas quando neste se produzem determinadas alterações chamadas transformações topológicas. Do conjunto de transformações topológicas possíveis, os alongamentos, as contrações e as torções desligam-se por transformações contínuas, uma vez que não se produzem cortes nem auto-interseções. Além dos aspectos topológicos deve-se ter em conta aspectos relacionados com a geometria do quebra-cabeça para a sua solução.


4. Falso Elo
O desafio deste quebra-cabeça consiste na separação das duas peças. Este quebra-cabeça, tal como o Anel Africano, é um tipo característico de falso nó, por apresentar-se com estruturas aparentemente entrelaçadas. A natureza topológica deste tipo de quebra-cabeça, a forma como as peças se interlaçam, é de capital importância para a sua caracterização. A topologia é o ramo da Matemática que estuda as propriedades do espaço que permanecem inalteradas quando neste se produzem determinadas alterações chamadas transformações topológicas. Do conjunto de transformações topológicas possíveis, os alongamentos, as contrações e as torções desligam-se por transformações contínuas, uma vez que não se produzem cortes nem auto-interseções. Além dos aspectos topológicos deve-se ter em conta aspectos relacionados com a geometria do quebra-cabeça para a sua solução.

5. Agulheta

Quebra-cabeça cujo objetivo é remover totalmente a argola da estrutura na qual se encontra presa, para tanto não se deve romper o cordão ou soltar as demais peças que se encontram fixas nele. A natureza topológica deste tipo de quebra-cabeça, a forma como as peças se interlaçam, é de capital importância para a sua caracterização. A topologia é o ramo da Matemática que estuda as propriedades do espaço que permanecem inalteradas quando neste se produzem determinadas alterações chamadas transformações topológicas. Do conjunto de transformações topológicas possíveis, os alongamentos, as contrações e as torções designam-se por transformações contínuas, uma vez que não se produzem cortes nem auto-interseções. Além dos aspectos topológicos deve-se ter em conta aspectos relacionados com a geometria do quebra-cabeça para a sua solução.


ESCAPE: Um outro quebra-cabeça dos mais interessantes que já encontrei. Trata-se de um desafio com peças deslisantes que tem por objetivo, perpassar uma peça por uma fenda na qual nenhuma outra passa

Disposição Inicial das Peças no Tabuleiro.

Quebra-cabeça de blocos deslizantes, cujo desafio é retirar o maior quadrado pela "fenda" existente na caixa. Conhecido na França como "L'Âne Rouge" ("Asno Vermelho"), este quebra-cabeça é resolvido com o mínimo de 81 movimentos. Existe uma grande família de quebra-cabeça de blocos deslizantes: Sequência, Sliding Block, Traffic Jam, Hughes, The Motor Garage, entre outros.

Postagens mais visitadas deste blog

Tsoro Yematatu - Um jogo do Zimbábue

Tsoro Yematatu
Pronuncia-se: TSOH-roh YEH-mah-TAH-too

OBJETIVO: Ser o último jogador a fazer uma linha com três peças suas.

NÚMERO DE JOGADORES: 02

MATERIAL:

- O tabuleiro do jogo
- 03 peças pretas
- 03 peças claras

REGRAS DO JOGO:

- Cada jogador pega 03 peças da mesma cor;
- Na sua vez, Cada jogador coloca uma peça sua no círculo do tabuleiro que ainda não foi ocupado;
- Quando todas as 06 peças (três de cada jogador) estiveram nos seus devidos lugares, move-se uma peça por vez, de um círculo a outro que esteja vazio, em linha reta.
- Cada jogador só pode ocupar um único circulo por uma de suas peças.
- Ganha quem primeiro alinha as suas três peças em linha reta, de acordo com as retas que ligam os círculos.


Bibliografia consultada:

Zaslavsky, C. (1998). Math games and activities from around the world. Chicago. Chicago Review Press.

TRILHA OU MOINHO

Trilha, também conhecido como Moinho, é um dos mais famosos dentre aqueles jogos em que se procura um alinhamento entre as peças, como o Gomoku, Jogo da Velha, Gnu, entre outros.

Diz-se que o tabuleiro da "Trilha" seria uma representação fenícia de seu império: o tabuleiro quadrado representando o mar, seu universo de conquistas; a casa central do tabuleiro, sendo Tiro, a capital fenícia; e as outras casas sendo as colônias fenícias, como Cádiz (Espanha) e Cartago (norte da África).

O objetivo neste jogo é buscar o alinhamento de 3 peças o que lhe dá o direito de capturar qualquer peça do adversário que não esteja em alinhamento. Ganha aquele jogador que tirar tantas peças do seu adversário tal que não haja mais possibilidades de alinhamento. Há, neste jogo 3 fases distintas. A primeira fase é o posicionamento das peças no tabuleiro, a segunda é a movimentação das peças para pontos adjacentes e a terceira fase, é a movimentação livre das peças, ou seja, não necessariamente pa…

QUEBRA-CABEÇAS DE METAL (PUZZLES EM METAL)

Extraido de www.matematica.no.sapo.pt estes puzzles, como são chamados os quebra-cabeças, fascinam pela quase impossibilidade de solução. Apresento o texto que extrair, na íntegra e sem a devida permissão de seus autores, do site mensionado e espero que se divirtam com tantas variedades de puzzles.


"Apresentação dos puzzles em metal "

Quem alguma vez teve que deslocar uma mesa de uma casa para outra ou ao longo de um corredor, sabe que o espaço tridimensional reserva algumas surpresas que quotidianamente passam despercebidas. Estas surpresas são bem conhecidas dos "viciados" na resolução/construção de puzzles de metal. Estes antigos ( e sempre atuais ) jogos artesanais consistem numa estrutura composta por duas ou mais peças de metal (fig. 1). Deste conjunto de peças entrelaçadas, o jogador deve separar uma delas - a peça problema - do resto do conjunto - a estrutura suporte - sem fazer deformações ou cortes.
A primeira impressão que temos quando confrontados com um pu…